SOLUTIONS des Énigmes & Jeux du 14 juillet 2019

Les énoncés de ces problèmes se trouvent dans l’article Énigmes & jeux du 14 juillet 2019 publié sur ce blog le jeudi 11 juillet dernier.

Voici toutes les réponses :

PREMIER PROBLÈME : Exercice n° 1 du Brevet de Maths 2019 

Solution : Il y a 23 marins qui ont reçu chacun 3 diamants, 50 perles et 180 pièces d’or.

L’exercice commence assez simplement dans la mesure où il n’y a pas cinquante façons de décomposer 69 (nombre de diamants) en produits de facteurs mais une seule :

69 = 3 x 23
et 3 et 23 sont premiers

On subodore rapidement que l’équipage comprend 3 marins qui vont recevoir chacun 23 diamants ou, plus probablement, 23 marins qui vont recevoir chacun 3 diamants.

Pour en avoir le cœur net, on tente la division de 1 150 (nombre de perles) et 4 140 (nombre de pièces d’or) par 23 et 3 :

→ 1 150  est divisible par 23 mais pas par 3 et  4 140 est divisible par 3 et par 23. Le nombre 23 est donc le seul diviseur premier commun à 69, 1 150 et 4 140.

1 150 = 50 x 23
4 140 = 180 x 23

Il en résulte que le capitaine va partager équitablement le butin entre 23 marins qui vont recevoir chacun 3 diamants, 50 perles et 180 pièces d’or.

Le sujet demandait aussi de faire la décomposition de 1 150 et 4 140 en facteurs premiers. Ce n’était pas nécessaire pour répondre à la question du partage, mais il s’agissait probablement de tester les savoir-faire des élèves :

1 150 = 5 x 5 x 2 x 23
4 140 = 3 x 3 x 5 x 2 x 2 x 23

.
DEUXIÈME PROBLÈME : Exercice n° 6 du Brevet de Maths 2019 

1.
Programme 1 → 5 x 3 = 15  puis  15 + 1 = 16
Programme 2 → 5 – 1 = 4  et  5 + 2 = 7  puis  4 x 7 = 28

2. a.                                                   2. b.
A()  =  3 +1 .                        3 +1  =  0  ⇔  3 =  -1  ⇔  = -1/3

3.
B()  =  ( – 1)( + 2)  = 2 + 2 – 2  =  2 +  – 2

4. a.
Il faut montrer que B() – A() = ( + 1)( – 3)
On calcule séparément les deux côtés de l’équation afin de vérifier si on aboutit au même résultat :
D’après les résultats précédents, B() – A() = (2 + – 2) – ( 3 +1) = 2 – 2 – 3
et ( + 1)( – 3) = 2 + – 3 – 3  =  2 – 2 – 3  →  Il y a bien égalité.

4. b.
Le programme 1 et le programme 2 donneront le même résultat pour tous les nombres tels que A() = B() c’est à-dire  B() – A() = 0.
D’après le résultat précédent, ceci revient à chercher les  tels que :

( + 1)( – 3) = 0

Un produit de facteurs étant nul si l’un au moins des facteurs est nul, on a :

 ( + 1) = 0  ou  ( – 3) = 0
⇔  = – 1  ou   = 3

Vérif :
·   = 3    → Programme 1 = Programme 2  = 10
·   = – 1 → Programme 1 = Programme 2  = – 2

.
TROISIÈME PROBLÈME : Les 10 soldats

Solution :

L’indice glissé dans l’énoncé était le mot « Pentagone » qui pouvait faire penser à chercher du côté des pentagrammes.

.
QUATRIÈME PROBLÈME : Interlude Devinettes !

1. Je suis entre 188 et 190, mais je ne suis pas 189. Qui suis-je ? Et.
2. Quel mot français contient le plus de « i » ? Simili car 6000 « i ».
3. Je suis à la tête de 25 soldats et sans moi Paris serait pris. Qui suis-je ? La lettre A.
4. J’ai une serrure mais pas de porte. Qui suis-je ? Un cadenas.
5. Un fermier a 17 vaches ; elles meurent toutes sauf 9. Combien en reste-t-il ? Meuh… 9 !
6. La famille Fünfkind a 5 enfants. La moitié sont des filles. Comment est-ce possible ? Les 5 enfants sont des filles.
7. Dans quel cas le chien est avant le maitre et l’employé avant le patron ? Dans le dictionnaire.
8. Quel nombre divisé par lui-même donne son double ? 0,5 car 0,5/0,5 = 1 et 2 x 0,5 =1.

 

CINQUIÈME PROBLÈME : Le gâteau triangulaire

Solution : Les deux découpes à effectuer sont IH et IJ

.
Soit le gâteau triangulaire quelconque ABC.

On le partage mentalement en deux triangles ABI et IBC rectangles en I et on va utiliser la propriété  suivante :

Si un triangle est rectangle, alors la longueur de la médiane issue de l’angle droit est égale à la moitié de la longueur de l’hypoténuse.

→ Dans le triangle ABI rectangle en I, la médiane [IH] est de même longueur que [AH] et [HB].
→ Dans le triangle IBC rectangle en I, la médiane [IJ] est de même longueur que [BJ] et [JC].

On sait que la boîte et le gâteau sont symétriques par la symétrie axiale qui transforme A en A’, B en B’ … I en I’ … etc.

Cette symétrie conserve toutes les longueurs. En conséquence, le triangle AHI est exactement semblable au triangle I’H’A’ (en orange sur le schéma) et le triangle IJC est exactement semblable au triangle C’J’I’ (en rose sur le schéma).

Reste le « morceau » IHBJ (en vert sur le schéma).

C’est un « cerf-volant » car les longueurs de [IH] et [HB] sont égales et les longueurs de [BJ] et [JI] également. On peut le faire pivoter (et pas le retourner car la Chantilly doit rester sur le dessus) afin que J prenne la place de J’ dans la boîte, I celle de B’, H celle de H’ et B celle de I’.

Il y a donc bien deux découpes à faire pour replacer le gâteau (en 3 morceaux) dans la boîte sans massacrer la garniture : la découpe IH et la découpe IJ.

.
SIXIÈME PROBLÈME : C’est bidon !

Au départ les 2 bidons sont vides.

On remplit entièrement le bidon de 5 litres.

Avec le lait de ce bidon, on remplit entièrement le bidon de 3 litres.
→ Il reste donc 2 litres dans le bidon de 5 litres.

On vide le bidon de 3 litres et on le remplit avec les deux litres qui sont dans le bidon de 5 litres.
→ On se retrouve donc avec 2 litres de lait dans le bidon de 3 litres et plus rien dans le bidon de 5 litres.

On remplit à nouveau entièrement le bidon de 5 litres et on le vide dans le bidon de 3 litres jusqu’à ce que ce dernier soit plein.
→ Comme le bidon de 3 litres contenait déjà 2 litres, on a ainsi ajouté 1 litre en provenance du bidon de 5 litres qui était plein et qui ne contient plus maintenant que les 4 litres demandés !

Autre solution :
.
.

Très Bon Week-End et à la semaine prochaine !


Illustration de couverture : Pièces du jeu d’échecs.

7 réflexions sur “SOLUTIONS des Énigmes & Jeux du 14 juillet 2019

  1. Alors première remarque : cette humiliation incessante des défavorisés en mathématiques doit cesser.

    Allons plus loin : les sujets de cette année étaient un véritable scandale, et Macron doit faire quelque chose.

    Prenons le sujet du brevet sur les pirates : « Le capitaine d’un navire possède un trésor constitué de 69 diamants, 1 150 perles et 4 140 pièces d’or ». Qu’est-ce que c’est que ce binz ? On apprend des contes de fées, à l’école, maintenant ? Ne serait-il pas plus utile de soumettre aux élèves des problèmes tirés de la vraie vie ?

    Exemple : un député de la Nation a droit à un traitement d’assistante parlementaire de 30 000 euros, une réserve parlementaire de 50 000 euros et des frais de mandat de 100 000 euros. Comment partage-t-il équitablement ce trésor entre ses administrés, sa maîtresse et lui-même ?

    Mais prenons le problème donné. Moi je croyais qu’il fallait appliquer une règle permettant de factoriser un nombre en nombre premiers. Apparemment, ce n’était pas le cas. Il fallait y aller au pif, en tâtonnant. Ce n’est pas sérieux.

    Passons aux devinettes. La famille Fünfkind a 5 enfants. La moitié sont des filles, parce que toutes sont des filles. C’est con. On ne peut pas prendre la moitié de 5 enfants, même si elles sont toutes des filles.

    Je pense que le Conseil d’Etat devrait intervenir. Ah ! et puis le CSA, aussi. C’est pas le CSA qui est censé faire la police sur les blogs, depuis la loi Avia ?

    J'aime

  2. « qui est censé faire la police sur les blogs, depuis la loi Avia ? » bin, Bercy a désormais une police pour chasser les mauvais contribuables, alors pourquoi pas le CSA ? remarquez, on pourrait fusionner les deux, vu que, à de très rares exceptions près, ce sont les mêmes : les salauds de riches de droite, conservateurs et réacs, qui truandent sans vergogne le Fisc,et qui sont aussi ceux qui se repaissent de fakenews, et se répandent en mensonges et autres méchancetises qu’elles sont pleines de propos racistes. 😉

    J'aime

  3. Je note que le complexe militaro-industriel en collusion avec le lobby judéo-chrétien avait réussi à placer une de ses énigmes chez l’ultra-libéral de service… Répondez madame Nathalie, combien avez vous touché ?

    J'aime

Répondre

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion /  Changer )

Photo Google

Vous commentez à l'aide de votre compte Google. Déconnexion /  Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.